Face Verification via ECOC
نویسندگان
چکیده
We develop a novel approach to face verification based on the Error Correcting Output Coding (ECOC) classifier design concept. In the training phase the client set is repeatedly divided into two ECOC specified sub-sets (superclasses) to train a set of binary classifiers. The output of the classifiers defines the ECOC feature space, in which it is easier to separate transformed patterns representing clients and impostors. The proposed method exhibits superior verification performance on the well known XM2VTS data set as compared with previously reported results.
منابع مشابه
Face Identification and Verification via ECOC
We propose a novel approach to face identification and verification based on the Error Correcting Output Coding (ECOC) classifier design concept. In the training phase the client set is repeatedly divided into two ECOC specified sub-sets (super-classes) to train a set of binary classifiers. The output of the classifiers defines the ECOC feature space, in which it is easier to separate transform...
متن کاملFace Verification Using Error Correcting Output Codes
The Error Correcting Output Coding (ECOC) approach to classifier design decomposes a multi-class problem into a set of complementary two-class problems. We show how to apply the ECOC concept to automatic face verification, which is inherently a two-class problem. The output of the binary classifiers defines the ECOC feature space, in which it is easier to separate transformed patterns represent...
متن کاملRobust Multi-view Face Detection Using Error Correcting Output Codes
This paper presents a novel method to solve multi-view face detection problem by Error Correcting Output Codes (ECOC). The motivation is that face patterns can be divided into separated classes across views, and ECOC multi-class method can improve the robustness of multi-view face detection compared with the view-based methods because of its inherent error-tolerant ability. One key issue with E...
متن کاملOn ECOC as Binary Ensemble Classifiers
The Error-Correcting Output Codes (ECOC) is a representative approach of the binary ensemble classifiers for solving multi-class problems. There have been so many researches on an output coding method built on an ECOC foundation. In this paper, we revisit representative conventional ECOC methods in an overlapped learning viewpoint. For this purpose, we propose new OPC based output coding method...
متن کاملThinned-ECOC ensemble based on sequential code shrinking
Please cite this article in press as: Hatami, N. doi:10.1016/j.eswa.2011.07.091 Error-correcting output coding (ECOC) is a strategy to create classifier ensembles which reduces a multiclass problem into some binary sub-problems. A key issue in designing any ECOC classifier refers to defining optimal codematrix having maximum discrimination power and minimum number of columns. This paper propose...
متن کامل